SCISEAL: A CFD CODE FOR ANALYSIS OF FLUID DYNAMIC FORCES IN SEALS

Mahesh Athavale and Andrzej Przekwas CFD Research Corporation Huntsville, Alabama N95-13586

07-17-3

23069

OUTLINE

322/4Z

- Objectives
- Status Report
- Code Capabilities
- Test Results
- Concluding Remarks and Future Plans

OBJECTIVES (CFDRC)

- Develop Verified CFD Code for Analyzing Seals
- Required Features Include:
 - Applicability to a Wide Variety of Seal Configurations such as: Cylindrical, Labyrinth, Face, and Tip Seals
 - Accuracy of Predicted Flow Fields and Dynamic Forces
 - Efficiency (Economy) of Numerical Solutions
 - Reliability (Verification) of Solutions
 - Ease-of-Use of the Code (Documentation, Training)
 - Integration with KBS

SCIENTIFIC CODE DEVELOPMENT

Develop a 3D CFD Code (SCISEAL) for Task 1: Cylindrical Seals

- for Annular, Tapered, Stepped
- Verification of Code Accuracy
- **Rotordynamic Coefficient Calculations**

Augmentation of SCISEAL Future Tasks:

- **Incorporation of Multi-Domain Capabilities**
- Extension to Labyrinth, Damper, Face, and Tip Seals

Note: Starting CFD Code = REFLEQS (developed by CFDRC under a contract from NASA MSFC/ED32)

STATUS: 1992 WORKSHOP

- Numerical Methods in 3D Code
 - **Colocated Grids**
 - **High-Order Schemes**
 - **Rotating and Moving Grid Systems**
- **Rotordynamic Coefficient Calculation Methods** (CFD Solutions)
 - Circular Whirl
 - Moving Grid (numerical shaker)
- **Seal Specific Interface**
 - **Grid Generation**
 - **Pre-Processing**

CURRENT STATUS

Augmentation Effort on SCISEAL:

- Implementation of Small Perturbation Model for Rotordynamics
 - Treat Eccentric as well as Centered Seals
 - **Efficient, Economic Solutions**
- Addition of 2-Layer Turbulence Model
 - Very Small Seal Clearances \rightarrow Very Small y⁺
 - Standard k-ε Model Inaccurate, Low Re Model Stiffness Problems, etc
 - 2-Layer Model Overcomes this Difficulty to Significant Extent
- **Code Validation**
 - Rotordynamics: Long & Short Annular Seals, Eccentric Seals
 - Labyrinth Seal Flow Computations
 - **Entrance Loss Coefficients**

CURRENT CODE CAPABILITIES

- Seals Code has:
 - Finite Volume, Pressure-Based Integration Scheme
 - **Colocated Variables with Strong Conservation** Approach
 - High-Order Spatial Differencing up to Third-Order
 - Up to Second-Order Temporal Differencing
 - Comprehensive Set of Boundary Conditions
 - Variety of Turbulence Models ($k-\epsilon$, Low Re $k-\epsilon$, multiple scale k-ε, 2-Layer Model), Surface Roughness Treatment
 - **Moving Grid Formulation for Arbitrary Rotor Whirl**
 - Rotordynamic Coefficient Calculation Methods, CFD Based Centered Seals: (i) Circular Whirl (ii) Numerical Shaker
 - Small Perturbation: Centered & Eccentric Seals

SEAL SPECIFIC CAPABILITIES

- GUI and Preprocessor Geared for Seals Problems
- Easy, Quick Geometry Definition and Grid Generation
- Four Types of Cylindrical Seals:
 - Annular, Axial Step-Down, Axial Step-Up, and Tapered
- Pull-Down Menus for Problem Parameter Specification
- One Line Commands for
 - Automatic Grid Generation
 - Integrated Quantities: Rotor Loads, Torque, etc.
 - Rotordynamic Coefficients

ROTORDYNAMIC COEFFICIENTS

Relation Between Fluid Reaction Forces and Rotor Motion

 $-\begin{bmatrix} F_{y} \\ F_{z} \end{bmatrix} = \begin{bmatrix} K_{yy} & K_{yz} \\ -K_{zy} & K_{zz} \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} + \begin{bmatrix} C_{yy} & C_{yz} \\ -C_{zy} & C_{zz} \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{z} \end{bmatrix} + \begin{bmatrix} M_{yy} & M_{yz} \\ -M_{zy} & M_{zz} \end{bmatrix} \begin{bmatrix} \ddot{y} \\ \ddot{z} \end{bmatrix}$ Stiffness — Damping Inertia (mass)

ROTORDYNAMIC COEFFICIENT METHODS

- Circular Whirl Orbit Method
 - Rotor Undergoes Circular Whirl
 - Rotating Frame → Quasi-Steady Solution
 - CFD Solutions at Several Whirl Frequencies
 - Pressure Integration to Yield Rotor Loads
 - Curve Fit to Force vs Whirl Frequency

*For Centered Rotor with Skew Symmetry Coefficient Matrices

ROTORDYNAMIC COEFFICIENTS

- Numerical Shaker Method
 - Rotor Motion Along a Radial Direction
 - Time-Dependent Solutions
 - Moving Grid Algorithm for Grid Deformation
 - Time-Dependent Pressure Loads → Rotordynamic Coefficients
 - Can Treat Centered as well as Eccentric Seals
 - Time Accurate Solutions \rightarrow Computationally Slower

ROTORDYNAMIC COEFFICIENT CALCULATIONS

Small Perturbation Method

- For Centered or Eccentric/Misaligned Seals
- Rotor Undergoes Circular Whirl with Very Small Radius
- Resulting Perturbations in Flow Variables:

 $\phi = \phi^0 + \varepsilon \phi^1$

- Generate 0th and 1st Order Flow Equations
- Use Fournier Series in Time for Perturbations:
 - -- Complex Form of 1st Order Variables;

-- Flow Equations are Quasi-Steady

- Complex Flow Perturbations Solved at Several Whirl Frequencies
- Integrate Pressure Perturbations for Rotor Loads
- Curve Fit for Rotordynamic Coefficients

Time-dependent solutions of the perturbation pressure ϵ = 0.0, Plane at half seal length, Ω = 2.0 ω

Time-dependent solutions of the perturbation pressure ε = 0.7, Plane at half seal length, Ω = 2.5 ω

2-LAYER TURBULENCE MODEL

- Small Seal Clearances → very Low y⁺ Values
- Standard Wall Functions → Inaccurate
- Low Re k-ε Model for Very Low y+
 - can generate very stiff systems
- 2-Layer Model Uses
 - wall functions for large v⁺
 - Low Re k-ε model for very low y+
- A Buffer Zone Used to Smoothly Merge the Two Treatments
- Model has been Tested for a Number of Seal and Rotating Flow Problems

^{*}Work Performed by Drs. Avva and Lai of CFDRC

SAMPLE RESULTS

 Computation of Flow in Enclosed Rotor System (Dailey and Nece)

Ex	Experimental value ~ 4x10 ⁻³				
k-e with wall function		2-layer model			
near wall	c _m	near wali y+	c _m		
16	3.58x10 ⁻³	21	3.9x10 ⁻³		
0.7	5.28x10 ⁻³	0.7	4.64x10 ⁻³		
0.04	5.59x10 ⁻³	0.04	4.25x10 ⁻³		

Torque coefficients,

CODE VALIDATION AND DEMONSTRATION

- Code has been Validated for a Large Number of Benchmark Problems
 - A List of 29 Relevant Problems Included in the Interim Report
- Extensive Validation Effort Conducted for Practical Seals:
 - Annular and Tapered Seals
 - Labyrinth Seals
- Annular Incompressible Seals (Dietzen and Nordmann, 1987)
- Long Incompressible Seals (Kanemori & Iwatsubo, 1992)
- Eccentric Annular Seal (Simon & Frene, 1991)
- Annular and Tapered Gas Seal (Nelson, 1985)
- Labyringth Seals Planar, (Wittig et al, 1987)
- Labyrinth Seals, Tapered Knives; stepped (Tipton et al, 1986)

VALIDATION CASES

- 1. Fully-developed flow in a pipe and channel.
- 2. Developing laminar flow in a narrow annulus between two cylinders. Slug flow at inlet, fully-developed flow at outlet.
- 3. Laminar flow between rotating cylinders. Below critical Taylor number, tangential flow only.
- 4. Flow between two cylinders, rotating inner cylinder. Taylor vortex flow, Laminar and turbulent.
- 5. 2-D driven cavity flow, Reynolds number up to 10,000. Comparisons with numerical results by Ghia et.al.
- 6. 3-D driven cavity flow.
- 7. Couette flow under different pressure gradients. With and without heat transfer.
- 8. Planar wedge flow in a slider bearing.
- 9. Laminar flow over a back step. Reattachment length comparison with experiments by Armaly and Durst.
- 10. Laminar flow in a square duct with a 90° bend. Comparison with experimental data by Taylor et.al.
- 11. Shock reflection over a flat plate.
- 12. Turbulent flow in a plane channel. Fully-developed solution at exit compared with experiments by Laufer.
- 13. Turbulent flow induced by rotating disk in a cavity. Comparison with experiments by Daily and Nece.
- 14. Centripetal flow in a stator-rotor configuration. Comparison with experiments by Dibelius et.al.
- 15. Flow between stator and whirling rotor of a seal. 2-D results for 0, 0.5, and synchronous whirl frequencies

VALIDATION CASES

- 16. Flow over a bank of tubes.
- 17. Turbulent flow in an annular seal. Comparison with experiments by Morrison et.al.
- 18. Turbulent flow in a 7-cavity labyrinth seal. Comparison with experiments by Morrison et.al.
- 19. Turbulent compressible flow and heat transfer in turbine disk cavities Athavale et.al.
- 20. 3-D driven cavity flow with lid clearance and axial pressure gradient. Control of flow through vortex imposition.
- 21. Flow in cavities on a rotor for an electrical motor. Interaction of Taylor vortices with driven cavity flow.
- 22. Flow in infinite and finite length bearings (without cavitation). Comparison of calculated attitude angles with theory.
- 23. Flow and rotordynamic coefficient calculation for straight, incompressible seals. Comparison with results from other numerical and analytical solutions; Dietzen and Nordmann.
- 24. Flow and rotordynamic coefficients in tapered compressible flow seals. Comparison with bulk-flow theory results; Nelson.
- 25. Rotordynamic Coefficients in a long annular incompressible flow seal. Comparison with experimental data; Kanemori and Iwatsubo.
- 26. Calculation of entrance loss coefficients in the entrance region of a generic seal. Effect of flow and geometry on the loss coefficient values; Athavale et.al.
- 27. Flow coefficient and pressures in a 5 cavity, straight knife, look-through labyrinth seal. Comparison with experimental data; Witting et.al.
- 28. Flow coefficients and pressures in a 3 cavity, tapered knife, look-through labyrinth seal. Comparison with experimental data; Tipton et.al.
- 29. Flow coefficients and pressures in a 2 cavity, straight-knife, stepperd labyyrinth seal. Comparison with experimental data; Tipton et.al.

LONG ANNULAR SEALS

- Experimental Data by Kanemori & Iwatsubo (1992)
- $R = 39.656 \text{ mm}, L = 240 \text{ mm}, Rotor Speed} = 600-3000 \text{ rpm}$ Clearance = 0.394 mm, ∆p = 20 kPa - 900 kPa Specified Inlet Loss Coefficient, Ra = 1000-18000
- **Various Models Checked:**
 - Whirl Method, Perturbation Method
 - Low Re k-ε Model, 2-Layer Model
 - 20x15x30 grid

DIRECT & CROSS-COUPLED STIFFNESS

Symbols: Lines:

Experimental Data by Kanemori and Iwatsubo

Numerical Results from SCISEAL

DIRECT & CROSS-COUPLED DAMPING

DIRECT MASS (INERTIA)

ECCENTRIC SEAL

- Experimental Data by Falco et al (1984)
 Numerical Data by Nordmann (1987), Simon & Frene (1991)
- Radius = 80 mm, Length = 40 mm, ϵ = 0. 1 \rightarrow 0.7 4000 rpm, Δp = 1MPa, Entrance Loss Coefficient = 0.5
- Physical Models
 - Standard k-ε Model
 - Small Perturbation Method
 - 12x6x30 grid

DIRECT STIFFNESS COEFFICIENT, K_{VV}, K_{zz}

CROSS-COUPLED STIFFNESS, K_{yz} , K_{zy}

DIRECT DAMPING, C_{yy} , C_{zz}

CROSS-COUPLED DAMPING, Cyz, Czy

DIRECT INERTIA M_{yy}, M_{zz}

STRAIGHT LABYRINTH SEAL

- Experimental Data by Wittig et al (1987)
- 5 Cavity, Planar Look Through Seal
- Physical Models

.....

- 30x30 Cells in each Cavity, 8/12 Cells in Gap
- Compressible Flow, Standard k-ε Model
- Specified Pressure Ratio Across Seal
- Results: Numerical Results Compared with Experimental Data
 - Pressure Along the Seal Length for Different Tip Gaps
 - Mass Flow Rates at Different Tip Gaps and Pressure Ratios

RESULTS FOR STRAIGHT LABYRINTH SEAL

STEPPED LABYRINTH SEAL

- Experimental Data by Tipton et al (1986)
- 2 Cavity, Planar, Stepped Labyrinth Seal
- Physical Models:
 - Compressible Flow, Specified Pressure Ratio
 - Standard k-ε Model
 - 26x53, 26x62 Cells in Cavities; 10 Cells in Tip Gap
- Results: Numerical Results Compares with Experimental Data
 - Pressure Along Stator and Rotor Surfaces at One Pressure Ratio
 - Mass Flow Rates at Different Pressure Ratios

RESULTS FOR STEPPED LABYRINTH SEAL

^{*}Work Performed by Dr. Makhijani of CFDRC

ENTRANCE LOSS COEFFICIENTS

- Measure of Flow Losses at Entrance Region
- SCISEAL Used to Compute ξ with CFD Solution
- Variation of ξ with
 - Axial Reynolds Number
 - Seal Clearance-to-Radius Ratio
 - Entrance Gap-to-Clearance Ratio

Physical Models

- Incompressible Flow, Standard k-ε Model
- Fully Developed Flow Upstream, Pressure Downstream
- 50 Cells in Axial Direction, 5 in Clearance, 30 or 50 in Entrance Region

FLOW GEOMETRY FOR ENTRANCE LOSS

RESULTS

Table 1. Entrance Loss Coefficients, Radius/Clearance = 50

Entrance Gap/Clearance = 50		Entrance Gap/Clearance = 100			
u _{ax} m/s	Reax	ξ	u _{ax} m/s	Reax	ξ
10.814 16.232 21.619 26.942	10377 15484 20746 25854	0.471 0.431 0.414 0.406	10.82 10.24 21.66 27.06	10384 15584 20785 25970	0.490 0.488 0.482 0.48

Table 2. Entrance Loss Coefficients, Radius/Clearance = 100

Entrance Gap/Clearance = 50		Entrance Gap/Clearance = 100			
uax m/s	Reax	ξ	u _{ax} m/s	Reax	ξ
10.80 16.56 21.595 26.67 32.27 43.062	5181 7945 10361 12796 15484 20667	0.562 0.54 0.526 0.51 0.493 0.478	10.797 16.176 21.55 26.934 32.24 42.533	5167 7761 10339 12664 15469 20408	0.567 0.558 0.55 0.54 0.537 0.524

PA-92-24 13

Table 3. Entrance Loss Coefficients, Radius/Clearance = 150

Entrance Gap/Clearance = 50		Entrance Gap/Clearance = 100			
u _{ax} m/s	Reax	ξ	u _{ax} m/s	Reax	ξ
10.82 16.19 21.49 26.74 32.25 48.33 64.487	3461 5178 6874 8553 10315 15461 20630	0.66 0.65 0.647 0.637 0.628 0.606 0.595	10.75 16.09 21.47 26.81 32.176 47.87 64.165	3438 5146 6874 8553 10292 15315 20630	0.68 0.66 0.65 0.648 0.64 0.63 0.624

RELATED CFD RESULTS

- **REFLEQS-3D Used for Rotating Flows**
 - Flows in Inducer & Centrifugal Impeller (For MSFC **Pump Consortium**)
 - REFLEQS-3D & SCISEAL have Similar Numerical **Techniques**
- SCISEAL in Narrow, Long Channels
 - Suitable for Cooling Channels In Rocket Nozzles Heat Transfer & Flow Calculations

Secondary flow patterns in a long, narrow channel

(Velocity vector size and cross-section sizes not to scale)

CONCLUDING REMARKS

- A 3D CFD Code, SCISEAL, Being Developed and Validated
 - Current Capabilities Include Cylindrical Seals
- State-of-the-Art Numerical Methods
 - Colocated Grids
 - High-Order Differencing
 - Turbulence Models, Wall Roughness (in progress)
- Seal Specific Capabilities
 - Rotor Loads, Torques, etc
- Rotordynamice Coefficient Calculations
 - Full CFD Based Solutions Centered Seals
 - Small Perturbations Method Eccentric Seals
- Extensive Validation Effort

WORK PLANS FOR NEXT YEAR

- Consolidate Current Models
- Include Multi-Domain Solution Methodology
 - Efficient Solutions for Complicated Flow Geometries
 - entrance region & seal clearance
 - stepped and straight labyrinth seals
 - face seals
 - -- tip seals
 - -- conjugate heat transfer
 - Increases Code Flexibility
 - Technology Already Developed but Requires Adaptation and Testing for Seals
- Continue Work on Labyrinth Seals
- Validation/Demonstration for Practical Seal Configurations

Entrance Loss Calculations

Single Domain Grid

Multidomain Grid

Single Domain grid

Multidomain grid

.